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Abstract. We adapt “string-inspired” worldline techniques to one-loop calculations on orbifolds, in par-
ticular on the S1/Z2 orbifold. Our method also allows for the treatment of brane-localized terms, or
bulk–brane couplings. For demonstration, we reproduce the well-known result for the one-loop induced
Fayet–Iliopoulos term in rigidly supersymmetric Abelian gauge theory, and generalize it to the case where
soft supersymmetry breaking mass terms for the bulk scalar fields are present on the branes.

1 Introduction

There are several approaches to perturbative calculations
in orbifold field theory. Decomposition of the fields into
Kaluza–Klein modes, which can then be treated within
ordinary four-dimensional perturbation theory, or using a
mixed position-momentum space formalism [1] are proba-
bly the most common ones. In this paper we outline an al-
ternative method, relying on the “string-inspired” world-
line formalism, which is well established in quantum field
theory in four non-compact dimensions nowadays. Using
worldline methods instead of standard second-quantized
perturbation theory may lead to a significant reduction of
calculational work in some cases [2]. With worldlines on
orbifolds, it is also straightforward to take into account
brane couplings to bulk fields in the Lagrangian, as we
will see.

The worldline method is a convenient tool in quantum
field theory, in particular for calculating one-loop ampli-
tudes and effective actions. Recent interest in it arose with
first-quantized string perturbation theory, where pertur-
bative calculations are carried out by path integration over
worldsheets; in the limit of infinite string tension, these be-
come the worldlines of point particles, so one can do point
particle perturbation theory in a similar manner [3]. This
results in a significant simplification of certain one-loop
calculations. Subsequently the method was reformulated
and rederived by simpler means to involve first-quantized
worldline path integrals [4,5]; this is of course related to
Feynman’s and Schwinger’s old approach to propagators
and loops via relativistic quantum mechanics. Recently
significant progress has been made in that field. Genera-
lizations involving multiloop calculations [6] and various
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types of couplings [7,8] have been worked out, and world-
line methods have been applied to several kinds of prob-
lems [9].

This work is organized as follows: In Sect. 2 we give
a short reminder of the worldline one-loop effective ac-
tion for a scalar field in non-compact space. In Sect. 3 we
describe how to implement compactification and orbifold
boundary conditions. Section 4 contains as a simple exam-
ple the calculation of the one-loop Fayet–Iliopoulos term
in SUSY QED on the S1/Z2 orbifold. We demonstrate how
to treat bulk–brane couplings in Sect. 5, where we compute
the one-loop renormalization of the Fayet–Iliopoulos term
in the same model, but with a soft SUSY breaking scalar
mass located on one of the branes. It is shown that such
a term induces divergences similar to those which would
have emerged in presence of orbifold parity violating bulk
mass operators. Finally, we draw some conclusions.

2 Worldlines in non-compact space

Consider a complex scalar particle of mass m in D-
dimensional non-compact Euclidean space with a self-
interaction potential V . The classical action is

S[φ, φ∗] =
∫

dDx
(|∂µφ|2 −m2|φ|2 − V (|φ|)) . (1)

The one-loop effective action can be written as

Γ = −Tr log
−∂2 +m2 + V ′′(|φ|)

−∂2 +m2 , (2)

which is written using the Schwinger proper time repre-
sentation as

Γ =
∫ ∞

0

dT
T

Tr exp
(−T (−∂2 +m2 + V ′′(|φ|))) . (3)
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The functional trace is performed in x-space to give

Γ =
∫ ∞

0

dT
T

∫
dDx (4)

×
〈
x
∣∣exp

(−T (−∂2 +m2 + V ′′(|φ(x)|)))∣∣x〉.
This expression can be evaluated using first-quantized
path integrals, which leads to the worldline representation
of the one-loop effective action:

Γ =
∫ ∞

0

dT
T

∫
x(0)=x(T )

Dx(τ) e−SWL[x(τ)], (5)

with the worldline action given by

SWL[x(τ)] =
∫ T

0
dτ
(

1
4
ẋ2 +m2 + V ′′(|φ(x)|)

)
. (6)

Here the path integral sums all closed trajectories of
length T of a fictitious particle, which are parameterized
by the proper time τ . UV divergences show up in the T
integration as T → 0, and may be regularized using dimen-
sional regularization or a simple cutoff. To do calculations
it is convenient to split the path integration into a base
point integral over all space and an integral over closed
loops y(τ) with y(0) = y(T ) = 0,

Γ =
∫ ∞

0

dT
T

∫
dDx0

∫
y(0)=y(T )=0

Dy(τ) e−SWL[x0+y(τ)]. (7)

The normalization of the free path integral is

∫
Dy(τ) exp

(
−
∫ T

0
dτ

1
4
ẏ2

)
= (4πT )−D/2, (8)

and to compute Γ explicitly, one would expand the expo-
nential in (7) using the contraction rule

〈yµ(τ1)yν(τ2)〉 = −gµνGB(τ1, τ2), (9)

where the bosonic worldline Green function GB (adapted
to the boundary conditions) is given by

GB(τ1, τ2) = |τ1 − τ2| − τ1 − τ2 +
2
T
τ1τ2. (10)

Similar (if slightly more complicated) formulas for one-
loop effective actions exist for free fermions, for scalars or
fermions coupled to background gauge fields, fields with
Yukawa interactions etc.

3 Worldlines on orbifolds

Now let space-time not be given by R
D but by R

D × O,
where O is a d-dimensional compact orbifold. We take O
to be the quotient of a d-dimensional smooth compact
manifold M by a group G with a discrete, non-free action

on M . M itself is obtained as M ∼= N/H, where N is a
d-dimensional smooth non-compact manifold and H is a
group with a discrete, free action on N .

A field theory on R
D × M is obtained from a field

theory on R
D × N by requiring the fields to take equal

values on each H-orbit.1 An orbifold field theory is then
obtained from the field theory on R

D ×M by permitting
only field configurations that are compatible with the orb-
ifold symmetry in the following sense: To each field φ we
assign a representation of G by operators {P g

φ}g∈G such
that for fixed g ∈ G the P g

φ constitute a symmetry of the
Lagrangian,

L[φ1 . . . φn] = L[P g
φ1
φ1 . . . P

g
φn
φn], ∀ g ∈ G. (11)

(by writing square brackets we indicate that L depends on
the φi and their derivatives). A field φ = φ(x, z), where
z stands for coordinates on M , is then required to take
equal values on each of the G-orbits up to that symmetry,

φ(x, z) = P g
φφ(x, gz). (12)

This leads to a well-defined Lagrangian on R
D × O, even

though the individual fields are in general not single-
valued functions on the fundamental domain. An arbitrary
field χ living on R

D ×M is projected on a field with the
same orbifold symmetry properties as φ by means of the
projector Qφ, which acts as

(Qφχ)(x, z) =
1

|G|
∑
g∈G

P g
φχ(x, gz). (13)

To do worldline calculations on R
D × O, we proceed as

for R
D × N , but include in the path integral also paths

that are closed only modulo compactification and orbifold
symmetry. Hence a path connecting points in R

D × N
that are identified in R

D × O is regarded as closed. For
the trivial case that G = E contains only the identity, we
can immediately write down the path integral when going
from R

D ×N to R
D ×M :∫

x(0)=x(T )

DD+dx(τ) e−SWL[x] → (14)

∑
h∈H

∫
x(0)=x(T )

DDx(τ)
∫

z(0)=hz(T )

Ddz(τ) e−SWL[x,z].

Non-trivial G allow for orbifold boundary conditions,
which we have to take into account. This is done by taking
the functional traces that appear in the derivation of the
worldline one-loop effective action over the appropriate
orbifold projections of eigenstates. Consider for instance
the contribution to the effective action from a complex
scalar field φ. In (3), we now restrict the trace to states

1 We are not considering non-trivial (Scherk–Schwarz)
boundary conditions for the compactification here for sim-
plicity. The generalization to Scherk–Schwarz compactification
should nevertheless be straightforward.
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with the same orbifold symmetry as φ. Hence we have
formally

Γ =
∫ ∞

0

dT
T

∑
n

(15)

× 〈
Qφχn

∣∣exp
(−T (−∂2 +m2 + V ′′(|φ|)))∣∣Qφχn

〉
,

where the {χn} form a complete orthonormal system on
R

D ×M . How exactly this is evaluated depends of course
on how the P g

φ operators act; in general, terms involving
matrix elements between G-equivalent points will appear
in (4).

In the most common examples of orbifolds in field the-
ory, M is a torus. In that case, it is possible to set N = R

d,
and to represent the action of H on R

d as a d-dimensional
lattice L. We must then replace∫

x(0)=x(T )

DD+dx(τ) e−SWL[x] →

∑
g∈G

cg
∑
l∈L

∫
x(0)=x(T )

DDx(τ)
∫

z(0)=g(z(T )+l)

Ddz(τ)

×e−SWL[x,z], (16)

with the cg numbers to be determined from the orbifold
symmetry properties of the field in question. Since we
know how to do worldline calculations on R

D+d, we can
use the replacement prescription (16) to do explicit calcu-
lations on a large class of orbifolds. We will demonstrate
a particularly simple one in the following section.

4 Example:
The Fayet–Iliopoulos term on S1/Z2

As an example consider a rigidly supersymmetric Abelian
gauge theory coupled to massless matter fields in five di-
mensions, D = 4, d = 1. The orbifold is S1/Z2, where
S1 ∼= R/(2πRZ), and the non-trivial Z2 element acts on
the circle as a reflection at the diameter. The fields are
conveniently written in D = 4 N = 1 multiplets [10]:
A 5D vector multiplet consists of a vector AM , a real
scalar Σ, a symplectic Majorana spinor represented as
two Weyl spinors λ1, λ2, and three real auxiliary fields
D. It decomposes into a 4D N = 1 vector multiplet
(Aµ, λ1, D), where D ≡ D3 − ∂5Σ, and a chiral multi-
plet ((Σ + iA5)/

√
2, λ2, D1 + iD2). A 5D hypermultiplet

decomposes into two chiral multiplets H+ = (φ+, ψ+, F+),
H− = (φ−, ψ−, F−); the subscript ± of the matter fields
indicates their parities under the orbifold reflection, e.g.
φ±(x1 . . . x4, x5) = ±φ±(x1 . . . x4,−x5). All fields are 2π
periodic in the fifth coordinate because we have compact-
ified on the circle. We take the gauge group to be Abelian;
then the Fayet–Iliopoulos (FI) term

LFI =
1
g2 ξ(x

5)D (17)

is allowed in the Lagrangian by both SUSY and gauge
symmetry (g is the U(1) gauge coupling). It has been the
subject of much recent investigation [11–13] how such an
FI term can be generated at one loop in the present model
by radiative corrections, and what the consequences for
phenomenology are.

The one-loop FI term is generated by scalar tadpole
graphs with the D auxiliary field. The relevant interaction
term for a single 5D hypermultiplet of charge q, written
in terms of the 4D component Lagrangian, is [11,12]

LD = qD
(|φ+|2 − |φ−|2) . (18)

In the worldline formalism, we can treat D as one would
treat an x-dependent mass term. Here we assume that
there is no bulk mass term for the hypermultiplet. We
comment on its relevance at the end of the paper. The rel-
evant contribution to the effective action in non-compact
space for each of the scalars φ+ and φ− is

ΓD =
∫ ∞

0

dT
T

∫
d5x0

∫
y(0)=y(T )=0

D5y(τ) (19)

× exp

(
−
∫ T

0
dτ
(

1
4
ẏ2 ± q D(x0 + y)

))
.

To take the orbifolding into account, we replace the in-
tegral over closed loops in R

5 by an integral over closed
loops in R

4 × S1/Z2, according to the prescription given
in (16), ∫

d5x0

∫
y(0)=y(T )=0

D5y e−SWL[x0+y] →

1
2

∑
k∈Z

∫
d4x0

∫
y(0)=y(T )=0

D4y

∫
x5(0)=x5

0
x5(T )=x5

0+2πRk

Dx5 e−SWL[x0+y,x5]

±1
2

∑
k′∈Z

∫
d4x0

∫
y(0)=y(T )=0

D4y

∫
x5(0)=x5

0
x5(T )=−x5

0+2πRk′

Dx5 e−SWL[x0+y,x5]. (20)

We can also split the path integral in the extra dimension
into a base point integral and an integral over loops ỹ5

from 0 to 0 modulo orbifold symmetry. To do this, note
that we can always write the 5-component of a given path
ỹ(τ) leading from ỹ5(0) = 0 to ỹ5(T ) = 2πRk (or ỹ5(T ) =
2πRk − 2x5

0) as a fixed path z5(τ) between 0 and 2πRk
(or 2πRk − 2x5

0), superimposed by some genuinely closed
loop y5(τ) with y5(0) = y5(T ) = 0. We choose z5(τ) to
be as simple as possible, interpolating linearly between 0
and 2πRk (I), or 0 and 2πRk − 2x5

0 (II),

z5(τ) = 2πRk
τ

T
(I), z5(τ) = 2

(
πRk − x5

0
) τ
T

(II).
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We thus end up with the following parameterizations for
the two types of closed paths:

x5(τ) = x5
0 + 2πRk

τ

T
+ y5(τ) (I),

x5(τ) = x5
0

(
1 − 2

τ

T

)
+ 2πRk

τ

T
+ y5(τ) (II).

so in the effective action we can make the following re-
placement for the free path integral:∫

d5x0

∫
D5y exp

(
−
∫ ∞

0
dτ

1
4
ẏ2
)

→
∫

d4x0

∫ πR

0
dx5

0

∫
D4y

∫
Dy5 exp

(
−
∫ ∞

0
dτ

1
4
ẏ2
)

×1
2

{∑
k∈Z

exp

(
−
∫ ∞

0
dτ

1
4

(
2πRk
T

+ ẏ5
)2
)

(21)

±
∑
k′∈Z

exp

(
−
∫ ∞

0
dτ

1
4

(
2πRk′

T
+ ẏ5 − 2x5

0

T

)2
)}

,

with a + (−) in the last line for even (odd) fields. Because
in the last line only ẏ5 depends on τ , and the τ integral
of ẏ5 is zero, this simplifies to

. . . =
∫

d4x0

∫ πR

0
dx5

0

∫
Dy
∫

Dy5

× exp
(

−
∫ ∞

0
dτ

1
4

(
ẏ2 +

(
ẏ5)2))

×1
2

{∑
k∈Z

exp
(

− (πRk)2

T

)

±
∑
k′∈Z

exp
(

− (πRk′ − x5
0)

2

T

)}

=
1
2

∫
d4x0

∫ πR

0
dx5

0 (4πT )−5/2

×
{∑

k∈Z

exp
(

− (πRk)2

T

)

±
∑
k′∈Z

exp
(

− (πRk′ − x5
0)

2

T

)}
. (22)

Here we have performed the free path integrals according
to (8).

To calculate the one-loop FI term, we add a coupling
to D as in (19) and consider the piece linear in D in an
expansion of the exponential:

Γ
(1)
D± = ±q

2

∫
dT
T

∫
d4x0

∫ πR

0
dx5

0 (4πT )−5/2

×
∫

D4y

∫
Dy5

{∑
k∈Z

exp
(

− (πRk)2

T

)

×
∫ ∞

0
dτ D

(
x0 + y, x5

0 + y5 + 2πRk
τ

T

)

±
∑
k′∈Z

exp
(

− (πRk′ − x5
0)

2

T

)
(23)

×
∫ ∞

0
dτ D

(
x0 + y, x5

0 + y5 + 2(πRk′ − x5
0)
τ

T

)}
.

To evaluate this expression we expand D around (x0, x
5
0),

D
(
x0 + y, x5

0 + y5 + 2πRk
τ

T

)
(24)

= exp
(
yµ∂µ +

(
y5 + 2πRk

τ

T

)
∂5

)
D(x0, x

5
0),

and perform a cumulant expansion writing〈
exp

(
yµ∂µ +

(
y5 + 2πRk

τ

T

)
∂5

)〉
(25)

= exp
(

2πRk
τ

T
∂5 +

1
2
〈y(τ)2〉∂2 +

1
2
〈y5(τ)2〉∂2

5 + . . .

)
.

Accordingly,〈
D
(
x0 + y, x5

0 + y5 + 2
(
πRk′ − x5

0
) τ
T

)〉
= exp

(
2(πRk′ − x5

0)
τ

T
∂5 +

1
2
〈y(τ)2〉∂2

+
1
2
〈y5(τ)2〉∂2

5 + . . .

)
D(x0, x

5
0). (26)

The terms in the exponential series can now be calculated
using the contraction rule (9), from which one in particular
has 〈yµ(τ)yν(τ)〉 = 2gµντ(1 − τ/T ).

If we just consider the UV-divergent parts, it turns
out that in the UV limit T → 0 only the leading term
D(x0, x

5
0) causes divergences. To see why, note that only

the k′ = 0, 1 winding numbers can lead to infinities in that
limit, as x5

0 ∈ [0, 2π]. Hence we can write for the k′ sum

∫
d4x0

∫ πR

0
dx5

0

∑
k′∈Z

exp
(

− (πRk′ − x5
0)

2

T

)

×
∫ ∞

0
dτ exp

(
2(πRk′ − x5

0)
τ

T
∂5 +

1
2
〈y(τ)2〉∂2

+
1
2
〈y5(τ)2〉∂2

5 + . . .

)
D(x0, x

5
0)

=
∫

d4x0

∫ πR

0
dx5

0

×
{

exp
(

− (x5
0)

2

T

)

×
∫ ∞

0
dτ exp

(
−2x5

0
τ

T
∂5 +

1
2
〈y5(τ)2〉∂2

5

)

+
(
x5

0 ↔ (x5
0 − πR)

)}
D(x0, x

5
0) + . . .

=
∫

d4x0

∫ πR

0
dx5

0

{
exp

(
− (x5

0)
2

T

)∫ ∞

0
dτ

×
[
1 − 2x5

0
τ

T
∂5 +

1
2
〈y5(τ)2〉∂2

5
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+
1
2

(
−2x5

0
τ

T
∂5

)2
+ . . .

]

+
(
x5

0 ↔ (x5
0 − πR)

)}
D(x0, x

5
0) + . . . , (27)

where we have kept explicit only potentially UV-divergent
terms. However, the contributions from the derivative
terms cancel for an arbitrary even D as T → 0, so only
the constant term gives rise to infinities. Furthermore, the
k sum part of (23) cancels between odd and even fields,
since each even scalar is paired up with an odd scalar in
our model, so we get the contribution to the overall one-
loop FI term from a single hypermultiplet by adding an
odd and an even part. We are thus left with

Γ
(1)
D+ + Γ

(1)
D− = q

∫
dT
T

∫
d4x0

∫ πR

0
dx5

0 (4πT )−5/2

×
{

exp
(

− (x5
0)

2

T

)
+ exp

(
− (πR− x5

0)
2

T

)}
×D(x0, x

5
0)T + finite. (28)

Retaining the dependence on the extra dimension, this
gives for the one-loop FI coefficient ξ(1)(x5

0) by comparison
with the tree-level coefficient in (17)

ξ(1)(x5
0) = qg2

∫ ∞

0

dT
T

(4πT )−5/2

×
{

exp
(

− (x5
0)

2

T

)
+ exp

(
− (πR− x5

0)
2

T

)}
T

+finite. (29)

For x5
0 in the bulk the integral is also UV finite: we get a

divergent part only on the branes. Cutting off the proper
time integral at its lower bound at T0 = 1/Λ2, we find by
convolution with a test function

ξ(1)(x5
0) =

qg2

32π2

((
δ(x5

0) + δ(x5
0 − πR)

)
Λ2 (30)

+
1
4
(
δ′′(x5

0) + δ′′(x5
0 − πR)

)
logΛ2

)
+ finite,

in accordance with [11–13]. In a framework of local su-
persymmetry, the Λ2 term breaks gauge invariance. In
fact, with several hypermultiplets, the absence of mixed
gravitational-U(1) anomalies requires that

∑
qi = 0. With

this condition the divergent piece vanishes identically.

5 Bulk–brane couplings

In this section we consider bulk fields with brane-localized
operators, by means of an example similar to the one
above. As before we take SUSY QED on S1/Z2, but in-
clude SUSY breaking masses for the scalar fields located
on one of the orbifold boundaries. We will see that this
may induce a one-loop FI term even if the usual condi-
tion for its absence in supersymmetric models is satisfied

– namely, that the charges sum up to zero between the
hypermultiplets.

Assume the Lagrangian contains a soft SUSY breaking
term localized on the x5 = 0 brane of the form

Lm2 = Rm2 δ(x5) |φ+|2. (31)

(Brane couplings to odd fields would make little sense
since odd fields have no support on the boundaries.) The
worldline action for an even scalar then reads

SWL =
∫ T

0

(
1
4
ẋ2 +Rm2 δ

(
x5(τ)

)
+ qD (x(τ)) + . . .

)
.

(32)
Exponentiating this action requires us to define what we
mean by arbitrary powers of the delta function; if a world-
line is to give a contribution to the effective action involv-
ing n powers of Rm2, it has to pass through the x5 = 0
brane n times at some τ1

0 . . . τ
n
0 with 0 < τ1

0 < . . . < τn
0 <

T . The integration over all closed paths leading from x5
0

to x5
0 passing n times through the brane thus becomes a

proper time ordered product of n proper time integrals,
with the integrand consisting of n+ 1 path integrals over
paths of length (τ i+1

0 − τ i
0) (where 0 ≤ i ≤ n), connecting

0 with 0 (or x5
0 with 0 for the first, setting τ0

0 ≡ 0, or 0
with x5

0 for the last, setting τn+1
0 ≡ T ):

∫ T

0
dτn

0

∫ τn
0

0
dτn−1

0 · · ·
∫ τ2

0

0
dτ1

0∫
y5
0(0)=x5

0
y5
0(τ1

0 )=0

Dy5
0

∫
y5
1(0)=0

y5
1(τ2

0 −τ1
0 )=0

Dy5
1 · · ·

∫
y5

n(0)=0
y5

n(T−τn
0 )=x5

0

Dy5
n.

On the orbifold, we also have to sum over all paths con-
necting points that are identified with the respective start
and end points.

Let us illustrate the procedure above by calculating
the contribution to first order in Rm2 to the one-loop FI
term. If a path is to give a contribution ∼ Rm2, it has to
pass through the brane once at some τ0 with 0 < τ0 < T ,
hence we have an integration over all τ0, an integration
over all paths leading from x5

0 to 0, and an integration
over all paths leading from 0 back to x5

0. Furthermore,
we identify x5

0 ∼ ±x5
0 + 2πkR and 0 ∼ 2πkR under the

orbifold symmetry.
Consider the 5-component of a given path x5(τ) which

leads from x5
0 to 0 (or from 0 to x5

0) modulo orbifold sym-
metry. As above, it can be represented by a linearly pa-
rameterized fixed path z5(τ) and a closed loop y5(τ). We
thus have the following parameterizations:

x5
Ia(τ) = x5

IIa(τ) = 2πRk
τ

τ0
+ x5

0
τ0 − τ

τ0
+ y5

a(τ),

x5
Ib(τ) = 2πRk

T − τ

T − τ0
+ (x5

0 + 2πRk̃)
τ − τ0
T − τ0

+ y5
b (τ),

x5
IIb(τ) = 2πRk

T − τ

T − τ0

+ (−x5
0 + 2πRk̃)

τ0 − τ

T − τ0
+ y5

b (τ), (33)
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with y5
a(0) = y5

a(τ0) = y5
b (τ0) = y5

b (T ) = 0. (Ia) and (IIa)
lead from x5(0) = x5

0 to x5(τ0) = 0+2πRk. (Ib) and (IIb)
lead back from x5(τ0) = 2πRk to x5(T ) = ±x5

0 + 2πRk̃.
Now we are ready to write down the one-loop effec-

tive action to first order in Rm2. We make the following
replacement with respect to the massless path integral in
uncompactified space, (19):∫

d4x0

∫ ∞

−∞
dx5

0

∫
D4y

∫
Dy5

× exp

(
−
∫ T

0

1
4

(
ẏ2 +

(
ẏ5)2))→

− Rm2
∫

d4x0

∫ πR

0
dx5

0

∫
D4y exp

(
−
∫ T

0

1
4
ẏ2

)∫ T

0
dτ0

×
{

1
2

∫
Dy5

a

∑
k∈Z

exp
(

−
∫ τ0

0
dτ

1
4
(
ẋ5

Ia
)2)

×
∫

Dy5
b

∑
k̃∈Z

exp

(
−
∫ T

τ0

dτ
1
4
(
ẋ5

Ib
)2)

+ (I ↔ II)

}
. (34)

After shifting some of the sums setting k′ = ±k ∓ k̃, per-
forming the free path integrals, and finally substituting
τ0 − T/2 ≡ τ , this becomes

. . . = −Rm2
∫

d4x0

∫ πR

0
dx5

0 (4π)−3
T−2

×
∫ T

0
dτ0 (τ0(T − τ0))

−1/2

×
∑
k∈Z

exp
(

−1
4

(2πRk − x5
0)

2

τ0

)

×
∑
k′∈Z

exp
(

−1
4

(2πRk′ + x5
0)

2

T − τ0

)

= −Rm2

(4π)3

∫
d4x0

∫ πR

0
dx5

0 T
−2

×
∫ T/2

−T/2
dτ
(
T 2/4 − τ2)−1/2

×
∑

k,k′∈Z

exp
(

−1
4
[
(T/2 − τ)(2πRk − x5

0)
2 (35)

+ (T/2 + τ)(2πRk′ − x5
0)

2] /(T 2/4 − τ2)
)
.

The part of the effective action relevant for the renor-
malization of the FI term is then once more obtained
by adding a mass-term-like coupling to D and consider-
ing just the linear part. The terms in an expansion like
(25) can be calculated to any order; here we again re-
strict ourselves to the divergent part. The effective action
then reads, up to finite terms which we dropped when set-
ting D(x, x5) ≈ D(x0, x

5
0), and conveniently substituting

τ = T/2 sin τ̃ ,

Γ (1) = Γ
(1)
D+ + Γ

(1)
D−

− qRm2

(4π)3

∫ ∞

0

dT
T

∫
d4x0

∫ πR

0
dx5

0 T
−2
∫ π/2

−π/2
dτ̃

×
∑

k,k′∈Z

exp
(− [(1 − sin τ̃)(2πRk − x5

0)
2

+(1 + sin τ̃)(2πRk′ − x5
0)

2] /(2T cos2 τ̃)
)

×D(x0, x
5
0)T , (36)

with Γ (1)
D++Γ (1)

D− as in (28). From this expression it is clear
that the only divergences in the additional term come from
k = k′ = 0 and x5

0 = 0 – it is of course not surprising
to find the FI term localized on the same brane as the
SUSY breaking mass. Keeping again the profile in the ex-
tra dimension, we obtain a divergent contribution to the
one-loop FI term of

ξ
(1)
Rm2(x5

0) = −g2qRm2

32π5/2

∫ ∞

1/Λ2
dT T−3/2 δ(x5

0)

= −g2qRm2

16π5/2 Λδ(x5
0) (37)

(again with a cutoff at T0 = 1/Λ2). This new result de-
serves a comment. If one introduces an odd bulk mass
M(x5) = Mε(x5) for the hypermultiplet, then the masses
of the bosonic components get an additional contribution

2M [δ(x5) − δ(x5 − πR)](|φ+|2 − |φ−|2) . (38)

As was shown in [11], this term creates a linear divergence
in the FI term. As we have seen the soft SUSY breaking
boundary term (31), which has a form similar to (38) with
the replacement m2 → 2M/R, also induces such a diver-
gent contribution into the FI term. Thus it acts as an
explicitly orbifold parity violating bulk mass operator.

It is straightforward to compute also the O ((Rm2)2
)

contribution to the one-loop renormalization of the FI
term (cubic and higher order terms in Rm2 are finite by
power counting): split the paths passing the x5 = 0 brane
twice into three parts, choose the parameterizations, and
do the integrals. The result is

ξ
(1)
(Rm2)2(x

5
0) =

g2q(Rm2)2

64π3 logΛ2 δ(x5
0) . (39)

Up to finite terms the total one-loop FI coefficient is thus
given by

ξ(1)(x5
0) = ξ

(1)
0 (x5

0) + ξ
(1)
Rm2(x5

0) + ξ
(1)
(Rm2)2(x

5
0), (40)

with ξ(1)0 (x5
0) as in unbroken SUSY, (30). In the presence of

several charged hypermultiplets, for a universal soft mass,
the condition Σqi = 0 ensures that the contributions (37)
and (39) vanish. However, with non-universal soft masses,
such contributions do arise and are relevant for the FI term
corresponding to the U(1)Y hypercharge gauge factor of
the standard model.
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6 Conclusions

In this paper we have presented an alternative method
to perform perturbative calculations in orbifold field the-
ory, by adapting the well-known worldline formalism to
orbifolds. We have shown that, with the worldline formal-
ism relying on path integration over closed worldlines, its
use in orbifolds requires the inclusion of paths that are
closed only modulo orbifold symmetry in the path inte-
gral. The main advantages of this procedure are that the
singular structure in the extra dimension becomes quite
transparent, and that a universal cutoff in the proper time
parameter T regulates also the 4D part. We have applied
this method to reproduce the one-loop Fayet–Iliopoulos
term in supersymmetric QED on the S1/Z2 orbifold. It
has turned out that it is also possible to treat brane-
localized operators for bulk fields in this formalism, by
appropriately splitting the corresponding worldlines. As
a sample calculation, the one-loop renormalization of the
Fayet–Iliopoulos term was calculated in the presence of
soft SUSY breaking scalar masses on one of the branes.
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